Aerodynamic Testing of the A400M at ARA

9

by Ian Burns and Bryan Millard

Aircraft Research Association Bedford, England

- Independent non-profit distributing research and development organisation
- Set up in 1952 by 14 member companies as the wind tunnel centre for the UK aircraft industry
- Main transonic wind tunnel fully operational in 1956
- Operational range up to Mach = 1.4
- Has tested all major UK aircraft, both civil and military, and the entire Airbus family of aircraft
- Full model design & manufacture capability

9

Aircraft Research Association Bedford, England

- Continuous improvement programme to enhance facilities and services
- Noise Enclosure permits 24-hour operation of TWT for tests with critical completion dates.
- Most productive transonic wind tunnel in Europe
- Large independent model design and manufacture capability
- Pioneering record in CFD code development

Experimental Facilities at ARA

		Po (BAR)	Μ
Transonic Tunnel	2.74m x 2.44m (9' x 8')	0.8 - 1.2	0 - 1.4
Supersonic Tunnel	0.68m x 0.76m (27" x 30")	0.4 - 1.4	1.4 - 3.0
Hypersonic Tunnels	0.30m x 0.40m (12" x 16") 0.30m D (12" D)	10 - 20 100 - 200	4 to 5 6, 7, 8
Two Dimensional Tunnel – Oscillatory Test Rig fo	0.20m x 0.45m (8" x 18") r helicopter rotor blades	1.5 - 4.0	0.3 - 0.87
Z4T Small Transonic Tunnel	0.22m x 0.20m (9" x 8")	Atmospheric 0.3 - 1.3	
 Propulsion Test House Exhaust nozzle & Thru Propeller Test Cell 	ist Reverser Test Rig (LSTMR)		
Mach Simulation Tank — TPS & Nacelle Calibrat	tion Facility		

- Specialised Rigs for Transonic Tunnel
 - CTS, Acoustic Liner, Isolated Cowl, Afterbody Twin Sting, Magnus, Propellers

A Centre of Aerodynamic Expertise

90

- Application and Analysis
- Software Support

Airbus A320 Cryogenic wind tunnel model

- Manufacture
- Models
- Balances
- Rigs

Lockheed Martin F-35 model (pre-downselect) Tested in the ARA Transonic Wind Tunnel

- Transonic Wind
 Tunnel
- Propulsion Rigs
- Weapons Separation
- Data Analysis

A400M Military Airlifter Characteristics

90

- Modern supercritical wing
- High speed cruise M = 0.72 at 37,000'
- Four TP400-D6 turboprop engines each powering advanced 8-bladed propellers
- Wing span 42.4m
- Overall length 42.2m
- MTOW up to 130 tonnes
- Maximum payload 37 tonnes
- Maximum altitude 37,000 ft
- Range at max payload 1,700 nm
- Ferry range 4,900 nm
- Maiden flight due in 2008

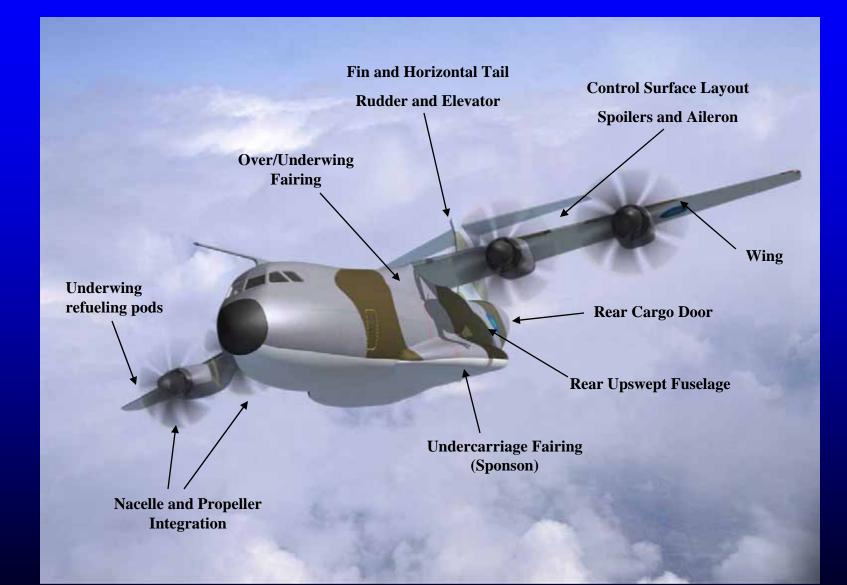
See www.airbusmilitary.com for more information

A400M Military Airlifter Roles

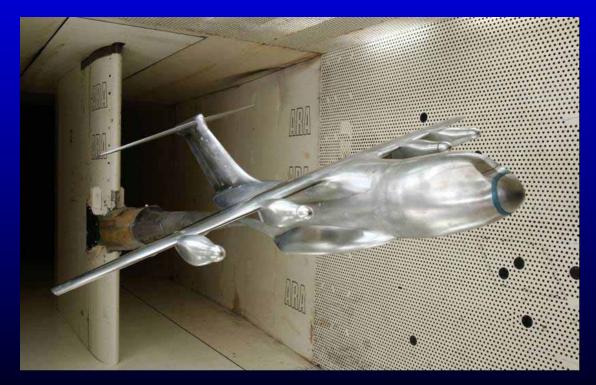
Tactical Transporter

- Exceptional soft/unprepared field performance
- Less than 3,000 ft runway
- Air delivery of paratroops and cargo
- Accommodates all major army vehicles and helicopters
- Very Low Level Extraction (VLLE) of single and multiple loads

• Tanker


- 2 and 3 point role convertible tanker/transport
- converts in 2 hours
- 41 tonnes transferable fuel

A400M Airframe Strategic Workshare


Main Aircraft Regions Studied in the ARA Transonic Wind Tunnel

5

Configuration Optimisation

- Full span un-powered models for efficient, highly productive testing
- First test performed at ARA on the A400M in 1993
- 28 test campaigns performed to date
- Testing scheduled to continue into 2005

Single Sting Testing

- Internal 6-component strain gauge balance on central sting
- Alternative balances available to suit test matrix
- Optimisation of wing, fuselage fairings, engine position, vertical and horizontal tail, rudder and elevator
- Multiple strain gauge balances on spoilers (up to 6) and aileron
- Definition of wing buffet onset boundary
- Surface pressure distributions for loads analysis and aerodynamic design, over 970 taps recorded simultaneously
- Typical test range
 - Mach No. = 0.2 to 0.79
 - Alpha = -4° to $+16^{\circ}$
 - Beta = -10° to +10°

Twin Sting STSR Testing

- Twin boom mounting in place of outboard engine, no central sting
- Live rear fuselage mounted on internal 6-component balance
- Considerable M, α and β range
- Yaw capability for lateral investigations
- Rear fuselage loads up to split plane
 only
- For development of rear fuselage, sponson, HTP, VTP and rear door
- Extensive pressure plotting of rear fuselage, tailplane and fin
- Rear fuselage oil flow visualisation
- Used with dummy central sting to derive sting corrections to force data

Enhanced Twin Sting ETSR Testing

<u>o</u>c

- Twin boom mounting in place of outboard engine, no central sting
- Each boom houses highly accurate six component strain gauged balance for measurement of overall model loads
- No split in model fuselage so no cut-off for influence of rear fuselage/tail geometry changes
- For development of rear fuselage, sponson, HTP, VTP and rear door.
- Used with dummy central sting to derive sting corrections to force data
- More specialised than STSR
- Limited α and β range

A400M STSR/ETSR Testing at ARA

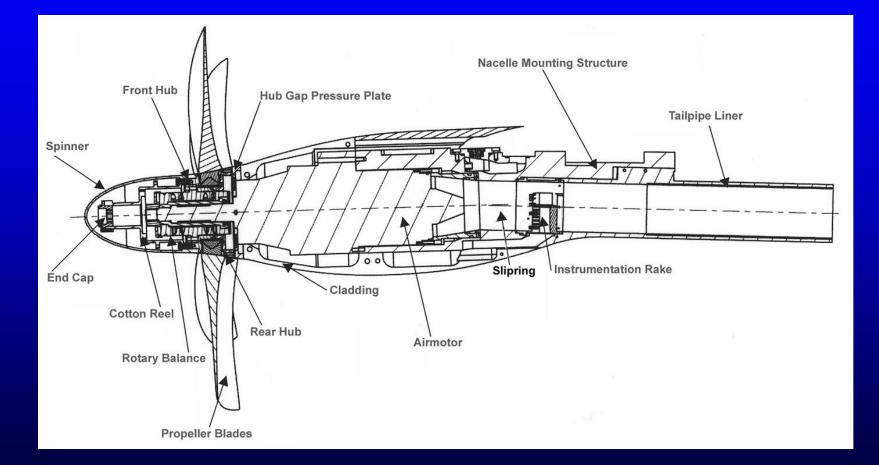
9

ETSR Balance Calibration

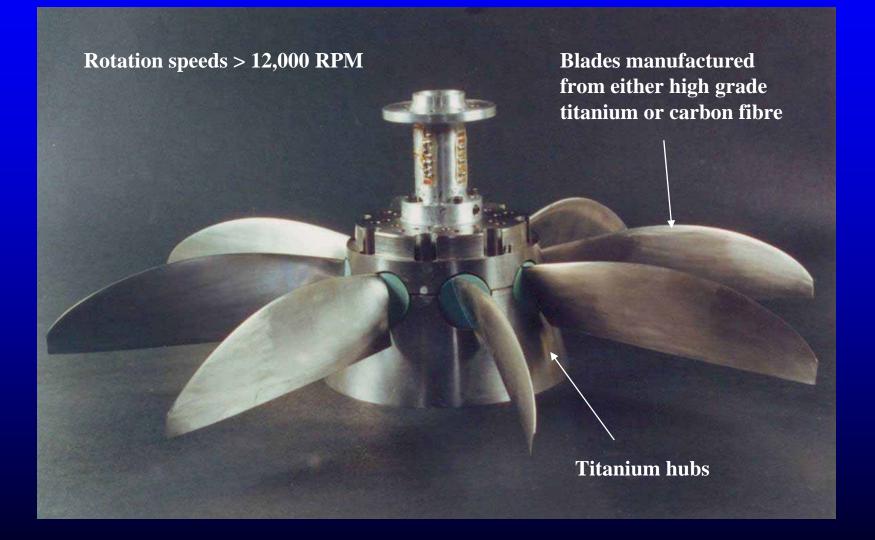
Model Instrumentation

Rear Door Testing

Flow Visualisation


Propeller Integration

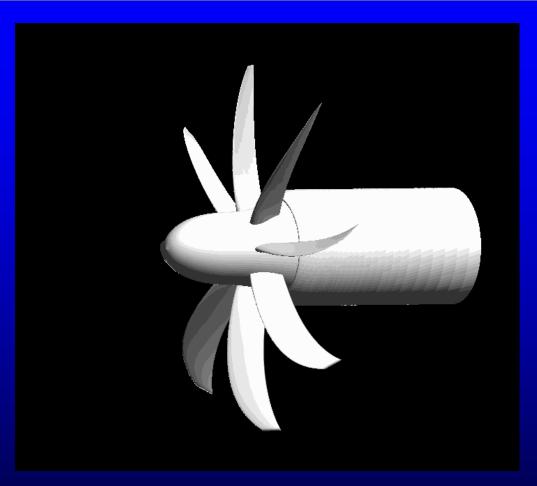
- Complex semi-span powered model to assess effects of propeller slipstreams
- Purpose made compressed air driven motors powering scaled 8-bladed propellers
- High level of instrumentation
- Designed for power-on component load measurement (e.g. spoilers, ailerons)
- First A400M powered test completed at ARA in 1997
- 4 major test campaigns performed to date
- Testing scheduled to continue into 2005
- Regarded as "high risk testing " due to the high speed rotating components



\bigcirc

Powered Propeller Assembly

Details of A400M Model Propeller


A400M Details of Wing Pressure Taps (Total for model > 600)

Powered Semi-span Model Testing

- Assess propeller slipstream effects on:
 - wing aerodynamics by comparison of wing pressure distributions with those from the full-span unpowered tests.
 - wing control surfaces by use of balanced spoiler panels and aileron
 - buffet onset boundaries
- Study power effects by variations in thrust coefficient achieved by combinations of blade angle and RPM
- Examine effect of propeller swirl direction achieved by opposite handed airmotors and propellers
- Engine failure cases
- Loads on various under-wing pods mounted on internal force balances
- Flow visualisation in presence of propeller slipstream
- Propeller induced forces (thrust, torque, efficiency...) from rotary balance data
- Propeller Normal Force from 1P system using TDC lock-on
- Blade stressing and vibration monitoring

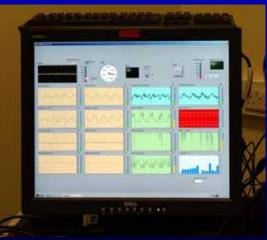


 \bigcirc

CFD generated swirl and pressure distributions behind A400M propeller

Click on image to play movie

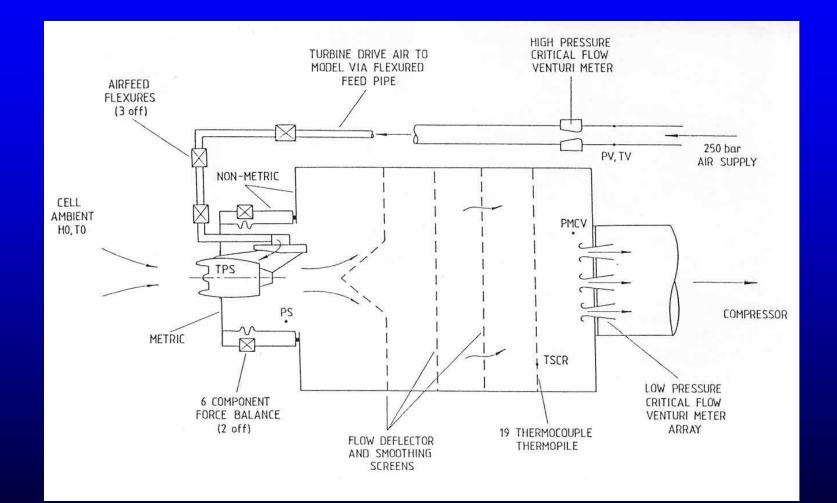
9


Propeller start-up on A400M Model in ARA Transonic Wind Tunnel

5

SPURS Dynamic Monitoring System

- Small Propeller Universal Recording System, developed at ARA
- Stand alone PC based system
 utilising LABVIEW technology
- Processes, displays, and records the dynamic signals from the model
- Rotary balance static and dynamic loads summed
- Allows monitoring of all rotary balance dynamics, blade stresses, and accelerometers
- Visual warnings when signals approach and exceed predetermined limits


A400M Model Trials in the ARA Propeller Test Cell

OC

- Used to demonstrate reliable operation of all rotating hardware and instrumentation systems
- Propellers run up to full operating RPM (>12,000)
- Checks on dynamics of rotary balances and propeller blades
- Hub dynamic balancing confirmed
- Slipring and air-motor performance assessed
- Low cost facility
- Risk reduction exercise

ARA Mach Simulation Tank

MST Calibrations of Air-Motor Exhaust Ducts

- ARA Mach Simulation Tank used to derive thrust and discharge coefficient characteristics of air motor assemblies
- Characteristics defined as a function of the exhaust duct rake pressures and temperatures
- Calibration covered Mach number and NPR range expected in Transonic Wind Tunnel
- Applied as a thrust correction to the TWT results, based on measured exhaust duct rake pressures and temperatures

Concluding Remarks

- ARA have been heavily involved in high-speed wind tunnel testing of the A400M since 1993
- ARA have designed and manufactured most of the A400M models tested in the ARA tunnel.
- Numerous test campaigns have been performed involving a wide range of test techniques, support rigs and three ARA test facilities
- Configuration optimisation tests have used full-span models mounted on both single and twin stings. Choice of support system driven by area of model under investigation
- Propeller integration tests have used complex, highly instrumented semi-span models mounted on underfloor balance
- Powerful compressed air driven motors used to spin 8-bladed propellers (RPM > 12,000, made from titanium or carbon fibre)
- Rotating hardware requires very close monitoring of loads, stresses and vibrations. ARA have developed the SPURS system specifically for this role
- Development testing on A400M will continue in 2004 and into 2005