

Microservices – What, Why?
(마이크로서비스를꼭써야하나)

Not only a browser anymore (Retire the Three-Tier Application Architecture to Move Toward Digital Business)

MASA (Mesh App & Service Architecture) – TOP 10 Technology Trend by Gartner for 2017

Microservices – moving from monolythic design (deployment, scaling, maintenance)

The mesh app and service architecture (MASA) is a multichannel solution architecture that leverages cloud and serverless computing, containers and

microservices as well as APIs and events to deliver modular, flexible and dynamic solutions. Solutions ultimately support multiple users in multiple roles

using multiple devices and communicating over multiple networks. However, MASA is a long term architectural shift that requires significant changes to

development tooling and best practices. Gartner, Top 10 technology trends 2017

https://www.gartner.com/doc/3352423/retire-threetier-application-architecture-digital
http://www.gartner.com/smarterwithgartner/gartners-top-10-technology-trends-2017/

Microservices Docker Containers

Docker Image

Docker Registry

Docker Hub

Azure Container Registry

Bounded Context

API Gateway

Event Bus

Commands

Events

Docker Host

Azure Container Service

Azure Service Fabric

Kubernetes

Docker Swarm

Mesos DC/OS

Linux Containers

Windows Containers

Domain Events

Mediator

Aggregates
Domain Entity

CQRS simplified
Domain-Driven Design

Message Brokers

RabbitMQ

Azure Service Bus

NServiceBus

MassTransit

Hyper-V ContainersAsync. communication

Brighter Stateful Services
Actors

Orchestrators

Autonomous

Decoupled

Isolated

Service Discovery
Transient Failures Handling

Resiliency

Health Checks

Retries with Exponential Backoff

Circuit Breakers Polly

Nomad & addressable services

Maintainability

• How easy is it to

maintain the code?

• How easy is it to fix a

bug?

Monitoring

• How easy is it to

monitor solution

health?

Scalability

• How easy is it to add

new computing power

and handle heavier

load?

Updates

• How easy is it to

update solution to the

newest version?

Onboarding

• How easy is it to get

onboard a new team

member?

-People

-Process

-Technologies

service-oriented
architecture (SOA) architectural style

loosely
coupled services.

The Bounded Context pattern

“Cells can exist because their membranes define

what is in and out and determine what can pass”

[Eric Evans]

Cells

Independent

Autonomous

Loosely coupled composition

Identifying a Domain Model per Microservice/BoundedContext
- Ubiquitous Language (보편적언어)

Conferences Management
Orders and Registration

Pricing and Marketing Payment Customer Service

Attendees

Conferences

Companies

Organizers

Country

Seats

Users

Payers

Conferences

Attendees

Buyers

Orders

Seats

Seats

Assignments

Reservation

Conferences

Promotions Payments

Seats

Returns

Customers

External

Gateways
…

separate codebase.

deployed independently

their own data

well-defined
APIs

don't need to share the same technology
stack, libraries, or frameworks.

Ordering microservice

Catalog microservice

eShop WebApp MVC

ASP.NET Core MVC

Identity microservice (STS+users)

eShop SPA Web app

TypeScript/Angular 4

eShop mobile app

Xamarin.Forms

C#

xPlat. OS:
iOS

Android

Windows

Docker Host

eShop traditional Web app

HTML

SQL Server db

Client apps

Basket microservice

Redis cache

Marketing microservice
MongoDB /

CosmosDB

SQL Server DB

SQL Server db

SQL Server db

Location microservice
MongoDB /

CosmosDB

Ordering.API

GracePeriod worker Svc.

eShopOnContainers Reference Application -
Architecture

▪마이크로서비스접근방식과클라우드

Cosmos DB
Billions transactions/day

SQL Database
2.1 million DBs

Cortana Power BI

Event Hubs
60bn events/day

IoT Hub
Millions of messages

Skype Intune Dynamics

An n-Tier WebApplication

1

Cloud-based
network
services are
more abstract

2

Monoliths are
difficult to
maintain and
scale

3

Requires lots of
server/network
configuration
and admin

4

Doesn't make
full use of cloud
abstractions

Traditional application approach Microservices application approach

• A microservice application

segregates functionality into

separate smaller services.

• Scales out by deploying each

service independently with

multiple instances across

servers/VMs

• A traditional application has

most of its functionality within a

few processes that are

componentized with layers and

libraries.

• Scales by cloning the app on

multiple servers/VMs

App 1 App 2App 1

• Single monolithic database

• Tiers of specific technologies

Data in Traditional approach Data in Microservices approach

• Graph of interconnected microservices

• State typically scoped to the microservice

• Remote Storage for cold data

Stateful

services

Web presentation

services

Stateless

servicesSQL DB

or

No-SQL

Mobile

apps

Web Tier

Services Tier

Data Tier

Monolithic Databases are
shared across services.

Stateless services

with

separate stores

Each microservice
owns its model/data!

SQL

[…]

Database servers are
usually the bottleneck

Cache Tier

Cache doesn’t help
much for massive data

ingress (Events, IoT, etc.)

Microservices
To The Rescue!

Microservices-Based WebApplication

Migrating a traditional application to microservices

1) Traditional app

2) Hosted as guest executables or containers in Service Fabric

3) Simple modernization - new microservices added alongside

4)Deeper modernization - breaking app into microservices

5) Transformed into microservices

Public Cloud Other CloudsOn Premises

Private cloud

Developer

▪컨테이너서비스와 MSA

Microservices != Containers

But they are a great fit… ☺

“Microservices is an architectural
design point;
containers are an implementation
detail that often helps.”

PC VM
Proces

s
Container

More isolated More efficient

Hardware Not shared Shared Shared Shared

Kernel Not shared Not shared Shared* Shared

System Resources

(ex: File System)
Not shared Not shared Not shared Shared

PC/VM

Container: App-A:v1

App-A v1

Lib-L v2

Runtime v5

Container: App-B:v3

App-B v3

Lib-L v3

Lib-M v2

Runtime v7

Container: App-A:v2

App-A v2

Lib-L v3

Runtime v6

Azure Container
Instances

GA (Windows and Linux)

Preview of AKS and ACI

Benefits:

• Fastest and easiest way to run a container

in the cloud

• No VM management

• Per-GB, Per-CPU, and Per-second billing

• Deploy images from DockerHub or Azure
Container Registry

• Allows customers to opt-in to having the
Azure Container Instances connector
configured in their AKS cluster, without
having to set it up themselves. The ACI
connector enables customers to deploy
additional container capacity for their AKS
cluster using ACI.

https://azure.microsoft.com/en-
us/blog/azure-container-instances-
now-generally-available/

Azure Container Instances (ACI)
Serverless Containers

https://azure.microsoft.com/en-us/blog/azure-container-instances-now-generally-available/

Azure Container
Instances
Azure Container Instances (ACI)
Get started easily

But what if I need…

Recommendation service

ReadingList web App

MySQL

Azure Storage(Images)

Simplify the deployment,
management, and operations of
Kubernetes

Easily manage clusters without
container expertise

No per-cluster charge. Only pay for
resources consumed.

Healing, auto-scaling,
load balancing

Reliable, zero-downtime rollout of
software versions

OSBA pre installed option enables
customers to use the Open Service
Broker for Azure with the Azure
Container Service without having to
first set it up.

Azure Kubernetes Service (AKS)
A fully managed Kubernetes cluster

Azure Kubernetes Service (AKS)
Get started easily

Azure Kubernetes Service (AKS)
Manage an AKS cluster

ACI Connector for Kubernetes
aka “Virtual Kubelet”

▪ Azure 기반의모범사례

eShopOnContainers Reference Application - Architecture

Ordering microservice

Catalog microservice

eShop WebApp MVC

ASP.NET Core MVC

Identity microservice (STS+users)

eShop SPA Web app

TypeScript/Angular 4

eShop mobile app

Xamarin.Forms

C#

xPlat. OS:
iOS

Android

Windows

Docker Host

eShop traditional Web app

HTML

SQL Server db

Client apps

Basket microservice

Redis cache

Marketing microservice
MongoDB /

CosmosDB

SQL Server DB

SQL Server db

SQL Server db

Location microservice
MongoDB /

CosmosDB

Ordering.API

GracePeriod worker Svc.

aka.ms/MicroservicesArchitecture

http://aka.ms/MicroservicesArchitecture

Client apps

Microservices

Mobile

app

Web

app

Microservice 2

Microservice 1

Microservice 3

Direct Client-To-Microservice communication

API Gateway

Consumer A

Consumer B

A
P

I
G

a
te

w
a
y

Who is consuming our services?

Who was consuming what?

What rate?

What time?

Microservice 2

Microservice 1

Microservice 3

Calls aggregation

Using a custom API Gateway Service

Microservice 2

Microservice 1

Client WebApp MVC

container

container

Web API

Web API

ASP.NET Core MVC

container

Microservice 3

container

Web API

Client SPA Web app

JavaScript/Angular.js

Client mobile app

API Gateway

ASP.NET Core

Web API
container

Back end

Traditional Web app

Browser

HTML

HTML

JSON

JSON

API Gateway “as a service/product”

AZURE API MANAGEMENT

API Gateway with Azure API Management

Architecture

Client WebApp MVC

ASP.NET Core MVC

container

Client SPA Web app

JavaScript/Angular.js

Client mobile app

Developer

portal

API Gateway

Publisher portal

Azure API Management

Microservice 2

Microservice 1

container

container

Web API

Web API

Microservice 3

container

Web API

Back end

Microservice 2

Microservice 1

Client WebApp MVC

Container

Container

Web API

Web API

ASP.NET Core MVC

Container

Microservice 3

Container

Web API

Client SPA WebApp

JavaScript / Angular.js

Client Mobile App

API Gateway

ASP.NET Core

Web API
Container

Back end

Traditional WebApp

Browser

HTML

HTML

JSON

JSON

Building resilient cloud applications

HTTP
Request/Response

HTTP

Request/Response

Microservice 2

Microservice 1

Client WebApp MVC

Web API

Web API

ASP.NET Core MVC

Container

Microservice 3
Web API

API Gateway

ASP.NET Core

Web API

Back end

Retries with Exponential Backoff

HTTP
Request/Response

HTTP

Microservice 2

Microservice 1

Client WebApp MVC

Web API

Web API

ASP.NET Core MVC

Container

Microservice 3
Web API

API Gateway

ASP.NET Core

Web API

Back end

Retries with Exponential Backoff

HTTP
Request/Response

HTTP

+ Circuit Breaker

Synchronous vs. Async communication across Microservices

i.e. MVC app,

API Gateway, etc.

Http sync.

request

Http sync.

request

Http sync.

request
Http sync.

request

Http sync.

response

Http sync.

response

Http sync.

response
Http sync.

response

Same Http Request/Response cycle!

Basket Ordering Catalog Other

i.e. MVC app,

API Gateway, etc.

Http sync.

request

Http sync.

response

Basket Ordering Catalog Other

Synchronous

all req./resp. cycle

Asynchronous

Comm. across

internal microservices

(EventBus: i.e. AMPQ)

Anti-pattern

Asynchronous Event-Driven communication with

an Event Bus

Database

Ordering Microservice

Basket Microservice

Database as

Cache

Service

ServiceUser-Profile Microservice

Web API Service

Database

Backend

UserUpdated event

(Publish Action)

Event Bus

(Publish/Subscribe Channel)
UpdateUser

command

UserUpdated event → Buyer info

UserUpdated event → Buyer info

Eventual consistency across microservices’ data based on event-driven async communication

DB update Event Bus Abstractions/Interface

Event Bus Implementations

RabbitMQ
Azure

Service

Bus

Other:

NServiceBus

MassTransit

etc.

Consumer A

Consumer B

R
o
ut

e
r

A
P
I
G

a
te

w
a
y

Service Registry

query

/health

/health

Health Checks API

Microservice 2

Microservice 1

Usually

Provided by the Orchestrator

(i.e. Service Fabric, Kubernetes, etc.)

Blue Green / Canary

http://aka.ms/MicroservicesEbook

aka.ms/MicroservicesArchitecture

https://aka.ms/microservices-guide-online-msft-docs

http://aka.ms/MicroservicesEbook
http://aka.ms/MicroservicesArchitecture
https://aka.ms/microservices-guide-online-msft-docs

